设f(x)在[0,1]上连续,且f(0)=1,f(1)=0.试证明存在x0属于(0,1),使f(x0)=x0

设f(x)在[0,1]上连续,且f(0)=1,f(1)=0.试证明存在x0属于(0,1),使f(x0)=x0

题目
设f(x)在[0,1]上连续,且f(0)=1,f(1)=0.试证明存在x0属于(0,1),使f(x0)=x0
答案
设g(x)=f(x)-x
f(x)在[0,1]上连续
则g(x)在[0,1]上连续,
g(0)=f(0)-0=1>0
g(1)=f(1)-1= -1<0
根据零点定理,
存在x0∈(0,1),使g(x0)=0
即:f(x0)=x0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.