已知,如图BE,CF是△ABC的边AC和AB上的高,在BE上截取BP=AC,在CF的延长线上截取CQ=AB,求证:AP⊥AQ.

已知,如图BE,CF是△ABC的边AC和AB上的高,在BE上截取BP=AC,在CF的延长线上截取CQ=AB,求证:AP⊥AQ.

题目
已知,如图BE,CF是△ABC的边AC和AB上的高,在BE上截取BP=AC,在CF的延长线上截取CQ=AB,求证:AP⊥AQ.
答案
证明:∵CF⊥AB,BE⊥AC,
∴∠AEB=∠AFC=90°,
∴∠ABE=∠ACQ=90°-∠BAC.
∵BP=AC,CQ=AB,
在△APB和△QAC中,
BP=AC
∠ABE=∠ACQ
CQ=AB

∴△APB≌△QAC(SAS).
∴∠BAP=∠CQA.
∵∠CQA+∠QAF=90°,
∴∠BAP+∠QAF=90°.
即AP⊥AQ.
先证明△APB≌△QAC,得∠BAP=∠CQA,通过等量代换得∠BAP+∠QAF=90°即可得AP⊥AQ.

全等三角形的判定与性质.

本题考查了三角形全等的判定和性质,要熟练利用三角形全等的性质来证明角相等.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.