已知:矩形OABC在平面直角坐标系中的位置如图所示,A(6,0),C(0,3),直线y=3/4x与BC边交于D点. (1)求D点的坐标; (2)若抛物线y=ax2+bx经过A、D两点,求此抛物线的表达

已知:矩形OABC在平面直角坐标系中的位置如图所示,A(6,0),C(0,3),直线y=3/4x与BC边交于D点. (1)求D点的坐标; (2)若抛物线y=ax2+bx经过A、D两点,求此抛物线的表达

题目
已知:矩形OABC在平面直角坐标系中的位置如图所示,A(6,0),C(0,3),直线y=
3
4
x与BC边交于D点.
(1)求D点的坐标;
(2)若抛物线y=ax2+bx经过A、D两点,求此抛物线的表达式;
(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P.
答案
(1)由题知,直线y=
3
4
x与BC交于点D(x,3).(1分)
把y=3代入y=
3
4
x中得,x=4,
∴D(4,3);(3分)
(2)抛物线y=ax2+bx经过D(4,3)、A(6,0)两点,
把x=4,y=3;x=6,y=0,分别代入y=ax2+bx中,(4分)
16a+4b=3
36a+6b=0

解之得
a=−
3
8
b=
9
4
(5分)
∴抛物线的解析式为y=-
3
8
x2+
9
4
x;(6分)
(3)抛物线的对称轴与x轴交于点P1,符合条件.
∵CB∥OA,
∴∠P1OM=∠CDO,
∵∠DCO=∠OP1M=90°,
∴Rt△P1OM∽Rt△CDO.
∵x=-
b
2a
=3,
∴该点坐标为P1(3,0).(11分)
过点O作OD的垂线交抛物线的对称轴于点P2
∵对称轴平行于y轴,
∴∠P2MO=∠DOC,
∴Rt△P2MO∽Rt△DCO.
在Rt△P2P1O和Rt△DCO中
P1O=CO=3,∠P2=∠ODC,
∴Rt△P2P1O≌Rt△DCO.
∴CD=P1P2=4,
∵点P2位于第四象限,
∴P2(3,-4).(12分)
因此,符合条件的点有两个,分别是P1(3,0),P2(3,-4).(13分)
(1)已知直线y=
3
4
x与BC交于点D(x,3),把y=3代入等式可得点D的坐标;
(2)如图抛物线y=ax2+bx经过D(4,3)、A(6,0)两点,把已知坐标代入解析式得出a,b的值即可;
(3)证明Rt△P1OM∽Rt△CDO以及Rt△P2P1O≌Rt△DCO后推出CD=P1P2=4得出符合条件的坐标.

二次函数综合题.

此题考查函数性质与坐标关系,最后一问探究点的存在性问题,几何图形形式问题和直角三角形性质,综合性比较强,难度较大.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.