四边形ABCD是正方形,点G是BC边上任意一点,连接AC,作BF⊥AG于点F,DE⊥AG于点E.
题目
四边形ABCD是正方形,点G是BC边上任意一点,连接AC,作BF⊥AG于点F,DE⊥AG于点E.
1、 求证△ABF全等于△DAE.
2、 直接写出1题中,线段EF与AF、BF的等量关系.
答案
证明:
(1)
∵∠BAD =90°,DE⊥AG
∴∠ADE+∠DAE=∠BAF+∠DAE=90°
∴∠BAF=∠ADE
∵AD=AB,∠AFB=∠AED=90°
∴△ABF≌△DAE
(2)
线段EF与AF、BF的等量关系为
AF=BF+EF
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点