已知二次函数y=ax2+bx+c的图象与x轴交于不同的两点A、B,点A在点B的左边,与y轴交于点C.若△AOC与△BOC的面积之和为6,且这个二次函数图象的顶点坐标为(2,-a),求这个二次函数的解析
题目
已知二次函数y=ax2+bx+c的图象与x轴交于不同的两点A、B,点A在点B的左边,与y轴交于点C.若△AOC与△BOC的面积之和为6,且这个二次函数图象的顶点坐标为(2,-a),求这个二次函数的解析式.
答案
∵二次函数y=ax
2+bx+c的图象与y轴交于点C,
∴C(0,c).
∵个二次函数图象的顶点坐标为(2,-a),
∴设A(m,0),B(4-m,0).
由于点A在点B的左边,有m<4-m,即有m<2.
∵△AOC与△BOC的面积之和为6,
∴
+
=6,
解得c=3.
则该抛物线方程为:y=ax
2+bx+3.
∴
,
解得
.
故该函数的解析式为:y=
x
2-
x+3.
根据抛物线的顶点坐标知对称轴为x=2,则设A(m,0),B(4-m,0),C(0,c).根据三角形的面积求法得到c=3.然后由抛物线的顶点坐标公式来求系数的值.
抛物线与x轴的交点.
本题考查了抛物线与x轴的交点.解答该题时,需要熟记抛物线顶点坐标公式.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点