设a,b是整数,集合E={(x,y)|(x-a)^2+3b≤6y},点(2,1)∈E,但点(1,0)(3,2)不∈E,求a,b的值.

设a,b是整数,集合E={(x,y)|(x-a)^2+3b≤6y},点(2,1)∈E,但点(1,0)(3,2)不∈E,求a,b的值.

题目
设a,b是整数,集合E={(x,y)|(x-a)^2+3b≤6y},点(2,1)∈E,但点(1,0)(3,2)不∈E,求a,b的值.
(2,1)∈E,则有:(2-a)^2+3b≤6.(1)
(1,0)不∈E,则有:(1-a)^2+3b>0.(2)
(3,2)不∈E,则有:(3-a)^2+3b>12.(3)
由(1)得3b≤6-(2-a)^2
由(2)得3b>-(1-a)^2
所以-(1-a)^2-3/2
由(3)得3b>12-(3-a)^2
所以12-(3-a)^2
答案
∵点(1,0)(3,2)不∈E,
∴点(1,0),(3,2)不满足集合E的关系式
也就是说,将点(1,0)(3,2)代入上述的关系式不成立,
∴要变号啊!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.