高数中常数变易法的实质?

高数中常数变易法的实质?

题目
高数中常数变易法的实质?
到底是一个怎样的原理,请教高手!
答案
常数变易法是求解微分方程的一种很重要的方法,常应用于一阶线性微分方程的求解.数变易法中,将常数C换成u(x)就可以得到非齐次线性方程的通解.
用u(x)代替C后,既能满足齐次方程,又能产出非齐次项,故一定可以找到合适的u(x),使得它由微分算子运算后得到原微分方程的非齐项,因此原微分方程的通解都可以写成y2=u(x)y1(x);
(y1(x)是与它相应的齐次方程的通解)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.