已知△ABC中,acosA=bcosB,试判断△ABC形状.

已知△ABC中,acosA=bcosB,试判断△ABC形状.

题目
已知△ABC中,acosA=bcosB,试判断△ABC形状.
我的解法如下:设(a/cosA)=(b/cosB)=t
则a=tcosB,b=tcosA
∵(a/sinA)=(b/sinB)
即(tcosB/sinA)=(tcosA/sinB)
cosBsinB-cosAsinA=0
sin(B-A)=0
∴B-A=0 ,A=B
∴△ABC是等腰三角形
用这种方法到底还要什么条件?
答案
题目给的是acosA=bcosB,而你用成了a/cosA=b/cosB
应该由条件和正弦定理得到sinAcosA=sinBcosB
即sin2A=sin2B
所以2A=2B或2A+2B=180°
即A=B或A+B=90°
所以是等腰三角形或者直角三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.