求三角形ABC的重心G的轨迹方程.

求三角形ABC的重心G的轨迹方程.

题目
求三角形ABC的重心G的轨迹方程.
圆x*2+y*2=4上有一定点A(2,0)和两个动点B,C(A,B,C按逆时针排列),当B,C两点保持角BAC=60度时,
答案
Ans:(x-2/3)^2 + y^2 = 1/3.
先画出图,看到角BAC是圆周角,则角BOC=120度.
设角AOB=α,那么角AOC=α+Pi/3.
用坐标表示点:B(cosα,sinα)
C(cos(α+Pi/4),sin(α+Pi/4))
重心坐标公式:x=(x1+x2+x3)/3
y=(y1+y2+y3)/3
将ABC坐标代入公式,可得到:
x=cosα/2 - sinα/(2根3) +2/3
{ 将三角函数式平方相加
y=sinα/2 + cosα/(2根3)
得(x-2/3)^2 + y^2 = 1/3.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.