如图,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G, 若AG=2,则AF的值是(  ) A.52 B.32 C.34 D.433

如图,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G, 若AG=2,则AF的值是(  ) A.52 B.32 C.34 D.433

题目
如图,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,
若AG=2,则AF的值是(  )
A.
5
2

B.
3
2

C.
3
4

D.
4
3
3
答案
∵△ABC是等边三角形,
∴∠ACB=∠ABC=60°,AB=BC=AC,
又∵AD=BE,
∴BD=CE,
在△ACE和△CBD中:
AC=CB
∠ACE=∠CBD=60°
CE=BD

∴△ACE≌△CBD,
∴∠CAE=∠BCD,
又∠AFG=∠CAF+∠ACF=∠BCD+∠ACF=60°,
∴在直角△AFG中,sin∠AFG=
AG
AF

即:sin60°=
2
AF

解得:AF=
4
3
3

故选D.
先证△ACE≌△CBD,得到∠CAE=∠BCD,然后利用定理代换得到∠AFG=60°,在直角△AFG中用正弦可以求出线段AF的长.

解直角三角形;全等三角形的判定与性质;等边三角形的性质.

本题考查的是解直角三角形,先利用边角边证明两个三角形全等,根据三角形全等的性质以及等量代换得到∠AFG=60°,然后在直角三角形中用三角函数求出AF的长.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.