求证cos^2a/cota/2-tana/2=1/4sin2a
题目
求证cos^2a/cota/2-tana/2=1/4sin2a
答案
先看分母:cot(a/2)-tan(a/2)=cos(a/2)/sin(a/2)-sin(a/2)/cos(a/2) =(cos^2(a/2)-sin^2(a/2))/(sin(a/2)cos(a/2)) =cosa/(sin(a/2)cos(a/2)) =2cosa/sina 所以:cos^2a/(cot(a/2)-tan(a/2))=cosasina/2=sin2a/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点