(2009•江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6
题目
(2009•江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6
,∠B=60度.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
图你们在百度里可以搜到,但是那个解析太不完整,谁能给我全部解析?青优网只有VIP客户才可以看解析,天哪,谁救就me!作业!HELP!SOS!PLEASE!
答案
证明:(1)∵四边形ABCD为等腰梯形,
∴AB=CD,∠A=∠D.
∵M为AD的中点,
∴AM=DM.
∴△ABM≌△DCM.
∴BM=CM.
∵E、F、N分别是MB、CM、BC的中点,
∴EN= 1/2MC,FN= 1/2MB,ME= 1/2MB,MF= 1/2MC.
∴EN=FN=FM=EM.
∴四边形ENFM是菱形.
(2)结论:等腰梯形ABCD的高是底边BC的一半.
理由:连接MN,
∵BM=CM,BN=CN,
∴MN⊥BC.
∵AD∥BC,
∴MN⊥AD.
∴MN是梯形ABCD的高
又∵四边形MENF是正方形,
∴△BMC为直角三角形.
又∵N是BC的中点,
∴MN= 1/2BC.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- ABCA类成语
- 篮子里有一堆水果,苹果占八分之五,梨占八分之三,往篮子里再放6个梨,此时苹果占十一分之五,篮子里现在一共有苹果和梨多少个?
- 如图,已知DE平行BC,BE平分角ABC角A=50º,角C=70度,求角ADE,角DEB,角BEC的度数
- 真核细胞拟核是什么物质?
- get caught
- 匀速圆周运动中线速度和角速度的关系的推导
- 营业员把一张5元,一张2元和一张5角的人民币,换成了共30枚面额为l元和l角的硬币.求换来的这两种硬币各有多少枚.
- 15比5多几分之几怎么做
- 爷爷七十大寿,亲朋好友都来祝贺.大家祝爷爷“福如东海,寿比南山”.可爷爷却叹道“( ),( ).”我赶紧把爷爷的话打住:“( )”,爷爷,您的身子骨比年轻人还壮实呢.”爷爷笑了,摸着我的头说:“就你会
- 已知二次函数y=ax2+bx+c的递增区间为(-∞,2],则二次函数y=bx2+ax+c的递增区间为_.
热门考点