设f(X)=3a^2+2bx+c,使a+b+c=0,f(0)>0,f(1)>0,求证:1.a>0且-2

设f(X)=3a^2+2bx+c,使a+b+c=0,f(0)>0,f(1)>0,求证:1.a>0且-2

题目
设f(X)=3a^2+2bx+c,使a+b+c=0,f(0)>0,f(1)>0,求证:1.a>0且-2
答案
f(0)>0推出c>0
f(1)>0推出3a+2b+c>0
a+b+c=0
2b=-2a-2c
代入二算式,得到a>c
所以a>0
c=-a-b代入二算式
得到2a+b>0
由于a>0,所以b/a>-2
c=-a-b>0 a+b
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.