对点集A={(x,y)|y=-3x+2 x∈N*,B=a(x*x-x+1),x∈N*},求证:存在唯一的非零整数a,使的A∩B不等于空集

对点集A={(x,y)|y=-3x+2 x∈N*,B=a(x*x-x+1),x∈N*},求证:存在唯一的非零整数a,使的A∩B不等于空集

题目
对点集A={(x,y)|y=-3x+2 x∈N*,B=a(x*x-x+1),x∈N*},求证:存在唯一的非零整数a,使的A∩B不等于空集
回做的帮下
答案
你题目打错了吧 尤其后面的B的集合
你在看看是错了么
告诉你这样的题目怎么做
把他当成你方程组来求解,所谓的A∩B只不过是方程组有解,在求当方程组有解的时候a有什么条件,a肯定能求出一个取值的范围
这样证明在a的这个取值范围里存在唯一的非零整数解
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.