连续型随机变量x的一切可能取值[a,b]内,其密度函数为f(x).求证:4D(X)

连续型随机变量x的一切可能取值[a,b]内,其密度函数为f(x).求证:4D(X)

题目
连续型随机变量x的一切可能取值[a,b]内,其密度函数为f(x).求证:4D(X)
答案
首先证明E(X-C)^2,当C=EX时最小,最小值为D(X)
E(X-C)^2=E[(X-EX)+(EX-C)]^2
=D(X)+2(EX-C)E(X-EX)+(EX-C)^2
=D(X)+(EX-C)^2
故当C=EX时,E(X-C)^2最小,最小值为D(X)
D(X)=E(X-EX)^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.