如图,已知在△ABC中,AB=AC,P是△ABC外部任意一点,连接AP,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,求证:BQ=CP.
题目
如图,已知在△ABC中,AB=AC,P是△ABC外部任意一点,连接AP,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,求证:BQ=CP.
答案
证明:∵∠QAP=∠BAC,
∴∠QAP+∠PAB=∠PAB+∠BAC,
即∠QAB=∠PAC;
在△ABQ和△ACP中,
,
∴△ABQ≌△ACP,
∴BQ=CP.
BQ、CP分别在△ABQ和△ACP中,围绕证明△ABQ≌△ACP,寻找全等的条件,根据题意可利用“SAS”解题.
旋转的性质;全等三角形的性质;全等三角形的判定.
本题考查了旋转的性质和三角形全等的证明方法.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点