设n∈N*,(2x+1)^n的展开式各项系数之和为an,(3x+1)^n展开式的二项式系数之和为bn,求limn→+∞(2an+3bn)/(an+1*bn+1)的值

设n∈N*,(2x+1)^n的展开式各项系数之和为an,(3x+1)^n展开式的二项式系数之和为bn,求limn→+∞(2an+3bn)/(an+1*bn+1)的值

题目
设n∈N*,(2x+1)^n的展开式各项系数之和为an,(3x+1)^n展开式的二项式系数之和为bn,求limn→+∞(2an+3bn)/(an+1*bn+1)的值
答案
令x=1由二项式定理可得an=3ⁿ,(3x+1﹚ⁿ展开式的二项式系数之和bn=2ⁿ∴ limn→∞2an+3bn/an+1bn+1= limn→∞2•3ⁿ+3•2ⁿ/3﹙ⁿ+1﹚+2﹙ⁿ+1﹚= limn→∞2+3•...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.