已知各项均为正数的数列 {an}的前n项和满足Sn〉1,且6Sn=(an+1)(an+2),n∈N* 求 (1)a1 (2)证明{an}是等差数列 并求通项公式
题目
已知各项均为正数的数列 {an}的前n项和满足Sn〉1,且6Sn=(an+1)(an+2),n∈N* 求 (1)a1 (2)证明{an}是等差数列 并求通项公式
答案
(I)由a1=S1=1/6(a1+1)(a1+2),解得a1=1或a1=2,由假设a1=S1>1,因此a1=2,又由a(n+1)=S(n+1)-Sn=1/6(a(n+1)+1)(a(n+1)+2)-1/6(an+1)(an+2),得(a(n+1)+an)(a(n+1)-an-3)=0,即a(n+1)-an-3=0或a(n+1)=-an,因an>0,故a(n+1)=-...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点