∫ sin√xdx 分步积分

∫ sin√xdx 分步积分

题目
∫ sin√xdx 分步积分
∫(1+x)dx/(1+√x) 换元法
答案
∫ sin√x · (2√x)/(2√x) dx
= 2∫ √x sin√x d(√x)
= - 2∫ √x d(cos√x)
= - 2√x cos√x + 2∫ cos√x d√x <==分部积分法
= - 2√x cos√x + 2sin√x + C
∫ (1 + x)/(1 + √x) dx
令u = √x,x = u²,dx = 2u du
= ∫ (1 + u²)/(1 + u) · 2u du
= 2∫ u(1 + u²)/(1 + u) du
= 2∫ [u² - u + 2 - 2/(u + 1)] du <==综合除法
= 2 · [u³/3 - u²/2 + 2u - 2ln|u + 1|] + C
= (2/3)x^(3/2) - x + 4√x - 4ln|1 + √x| + C <==将u = √x回代
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.