如图:在△ABC中,∠A=α,△ABC的内角或外角平分线交于点P,且∠P=β,试探求图1,2,3中α与β的关系,并选择你认为最有把握又最喜欢的一个加以说明.

如图:在△ABC中,∠A=α,△ABC的内角或外角平分线交于点P,且∠P=β,试探求图1,2,3中α与β的关系,并选择你认为最有把握又最喜欢的一个加以说明.

题目
如图:在△ABC中,∠A=α,△ABC的内角或外角平分线交于点P,且∠P=β,试探求图1,2,3中α与β的关系,并选择你认为最有把握又最喜欢的一个加以说明.
答案
(1)β=90°+
1
2
α;(2)β=
1
2
α;(3)β=90°-
1
2
α.
下面选择(1)进行证明.
在图(1)中,根据三角形内角和定理可得:∠ABC+∠ACB=180°-∠A.
∵BP与CP是△ABC的角平分线,
∴∠PBC=
1
2
∠ABC,∠PCB=
1
2
∠ACB,
∴∠PBC+∠PCB=
1
2
(∠ABC+∠ACB)=90°-
1
2
α.
在△PBC中,∠BPC=180°-(∠PCB+∠PCB)=180°-(90°-
1
2
α)=90°+
1
2
α.
∴β=90°+
1
2
α.图(2),结论:∠BPC=
1
2
∠A.
证明如下:
∠P=∠1-∠2=
1
2
(∠ACD-∠ABC)=
1
2
∠A.
∴β=
1
2
α;
(3)∵BP、CP分别是△ABC两个外角∠CBD和∠BCE的平分线,
∴∠CBP=
1
2
(∠A+∠ACB),∠BCP=
1
2
(∠A+∠ABC),
∴∠BPC=180°-∠CBP-∠BCP=180°-∠A-
1
2
(∠ABC+∠ACB),
∴∠P与∠A的关系是:∠P=180°-∠A-
1
2
(∠ABC+∠ACB)=90°-
1
2
α,
即β=90°-
1
2
α.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.