抛物线y=ax^2-3x+3a+a^2经过原点,则其顶点坐标是

抛物线y=ax^2-3x+3a+a^2经过原点,则其顶点坐标是

题目
抛物线y=ax^2-3x+3a+a^2经过原点,则其顶点坐标是
若抛物线y=x^2+x+b^2经过点(a,-1/4)和(-a,y1),则y1的值是
答案
抛物线经过原点,可以把x=0,y=0代入y=ax²-3x+3a+a²得:
0=3a+a²
a(a+3)=0
a=0,或a=-3
因为在抛物线y=ax²-3x+3a+a²中,a≠0
所以a=-3
所以抛物线的解析式是:y=-3x²-3x+3×(-3)+(-3)²,即是y=-3x²-3x,化成顶点式,是:
y=-3(x²+x)
y=-3(x²+x+1/4)+3/4
y=-3(x+1/2)²+3/4
所以抛物线的顶点坐标是(-1/2,3/4)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.