Sn=0·1/n+(1/n)^2·1/n+...+(i/n)^2+...+(n-1/n)^2·1/n怎么算出等于(n-1)n(2n-1)/6n^3

Sn=0·1/n+(1/n)^2·1/n+...+(i/n)^2+...+(n-1/n)^2·1/n怎么算出等于(n-1)n(2n-1)/6n^3

题目
Sn=0·1/n+(1/n)^2·1/n+...+(i/n)^2+...+(n-1/n)^2·1/n怎么算出等于(n-1)n(2n-1)/6n^3
=1/n^3[1^2+2^2+...i^2+...+(n-1)^2]
=(n-1)·n·(2n-1)/6n^3
=1/3-(1/2n-1/6n^2)
这里面的第二步.
答案
1^2+2^2+...i^2+...+(n-1)^2=(n-1)n(2n-1)/6具体证明我忘了,但是归纳法推理肯定推得出来证1+4+9+n^2=n当n=1时,等式成立,当n=k时S(k-1)=(k-1)k(2k-1)/6S(k)=S(k-1)+k^2=(2k^3-3k^2+k)/6+k^2=(2k^3+3k^2+k)/6=k(k+1)(2...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.