抛物线y^2 + 3x - 4y+7=0焦点和准线方程是什么

抛物线y^2 + 3x - 4y+7=0焦点和准线方程是什么

题目
抛物线y^2 + 3x - 4y+7=0焦点和准线方程是什么
答案
y^2-4y+4=-3x-3
(y-2)^2=-3[x-(-1)]
且对称轴垂直于y轴
所以顶点(-1,2)
对称轴过顶点,所以是y=2
2p=3,所以p=3/2
所以顶点到焦点和到准线距离都是p/2=3/4
(y-2)^2=-3[x-(-1)]
显然开口向左
所以焦点在顶点左边3/4
所以焦点横坐标是-1-3/4=-7/4
所以焦点(-7/4,2)
准线在顶点右边3/4处,且和对称轴垂直
对称轴是y=2,顶点(-1,2)
所以准线x=-1+3/4=-1/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.