求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.

求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.

题目
求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.
答案
y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6由于函数z=(u-1)2+6在[-1,1]中的最大值为zmax=(-1-1)2+6=10最小值为zmin=(1-1)2+6=6故当sin2x...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.