已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题: (1)f(x)不可能是偶函数; (2)当f(0)=f(2)时,f(x)的图象必关于直线x=1对称; (3)若a2-b≤0,则f(x)在

已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题: (1)f(x)不可能是偶函数; (2)当f(0)=f(2)时,f(x)的图象必关于直线x=1对称; (3)若a2-b≤0,则f(x)在

题目
已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:
(1)f(x)不可能是偶函数;
(2)当f(0)=f(2)时,f(x)的图象必关于直线x=1对称;
(3)若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;
(4)f(x)有最小值b-a2
其中正确的命题的序号是______.
答案
(1)当a=0时,函数f(x)是偶函数,当a≠0时,f(x)必非奇非偶函数,所以(1)错误.
(2)若f(0)=f(2),则|b|=|4-4a+b|,所以4-4a+b=b或4-4a+b=-b,即a=1或b=2a-2.当a=1时,f(x)的对称轴为x=1.
  当b=2a-2时,f(x)=|x2-2ax+2a-2|=|(x-a)2-2-a2|,此时对称轴为x=a,所以(2)错误.
(3)若a2-b≤0,则f(x)=|x2-2ax+b|=|(x-a)2+b-a2|=(x-a)2+b-a2,所以此时函数区间[a,+∞)上是增函数,所以(3)正确.
(4)由(3)知,当a2-b≤0,函数f(x)有最小值|a2-b|=a2-b,所以(4)错误.
故答案为(3).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.