在底面是平行四边形的四棱锥P-ABCD中,点E在PD上,且PE:ED=2:1在棱PC上是否存在一点F,使BF与平面AEC平行

在底面是平行四边形的四棱锥P-ABCD中,点E在PD上,且PE:ED=2:1在棱PC上是否存在一点F,使BF与平面AEC平行

题目
在底面是平行四边形的四棱锥P-ABCD中,点E在PD上,且PE:ED=2:1在棱PC上是否存在一点F,使BF与平面AEC平行
答案
存在
AC,BD交于点O,连接EO
取PE中点M,取PC中点N 连接BM,MN,NB
在△PEC中 MN//EC
在△DBM中 EO//BM
所以平面AEC//平面BMN
所以BN//平面AEC
所以只需将点D取到PC中点处,(F,N重合)时
BF与平面AEC平行
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.