如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,交AD于F,若CF=AB,试猜想∠ACD的度数是多少?并证明.

如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,交AD于F,若CF=AB,试猜想∠ACD的度数是多少?并证明.

题目
如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,交AD于F,若CF=AB,试猜想∠ACD的度数是多少?并证明.
答案
∠ACD=45°
理由:∵AD⊥BC,CE⊥AB,
∴∠ADB=∠ADC=∠BEC=90°,
∴∠B+∠BAD=90°,∠B+∠BCE=90°,
∴∠BAD=∠BCE.
在△ABD和△CFD中
∠ADB=∠ADC
∠BAD=∠BCE
AB=CF

∴△ABD≌△CFD(AAS)
∴AD=CD.
∵∠ADC=90°,
∴∠ACD=45°.
先由条件可以得出△ABD≌△CFD,就可以得出AD=AC,由等腰直角三角形的性质就可以得出∠ACD的度数.

全等三角形的判定与性质.

本题考查了直角三角形的性质的运用,等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.