正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM为多少时,四边形ABCN的面积最大?
题目
正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM为多少时,四边形ABCN的面积最大?
答案
设BM=x,则MC=4-x,
∵∠AMN=90°,
∴∠AMB=90°-∠NMC=∠MNC,
∴△ABM∽△MCN,则
=
,即
=
,
解得:CN=
,
∴S
四边形ABCN=
×4×[4+
]=-
x
2+2x+8=-
(x-2)
2+10,
∵0≤x≤4,
∴当x=2时,S
四边形ABCN最大.
即当BM的长为2时,四边形ABCN的面积最大.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点