如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D,求证:点D在AB的垂直平分线上.
题目
如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D,求证:点D在AB的垂直平分线上.
答案
证明:∵∠C=90°,∠A=30°,
∴∠ABC=90°-30°=60°,
∵BD平分∠ABC,
∴∠ABD=
∠ABC=
×60°=30°,
∴∠A=∠ABD,
∴DA=DB,
∴点D在AB的垂直平分线上.
根据直角三角形两锐角互余求出∠ABC=60°,根据角平分线的定义求出∠ABD=30°,从而得到∠A=∠ABD,再根据等角对等边的性质可得DA=DB,然后根据到线段两端点距离相等的点在线段垂直平分线上即可得证.
线段垂直平分线的性质.
本题考查了线段垂直平分线的判定,以及直角三角形的性质,角平分线的定义,比较简单.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点