已知A1=2,An-4A(n-1)=2^n,求An的通项公式

已知A1=2,An-4A(n-1)=2^n,求An的通项公式

题目
已知A1=2,An-4A(n-1)=2^n,求An的通项公式
答案
A(n)-4A(n-1)=2^n [A(n)+a*2^n]=4[A(n-1)+a*2^(n-1)] A(n)=4A(n-1)+a*2^(n) a=1 [A(n)+2^n]=4[A(n-1)+2^(n-1)]=4^(n-1)[A(1)+2^1]=4^n A(n)=4^n-2^n 回答者:侯宇诗 - 大魔导师 十二级 8-9 21:24这个答案是完全正确...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.