如果实数a,b满足条件a2+b2=1,|1-2a+b|+2a+1=b2-a2,则a+b=_.
题目
如果实数a,b满足条件a2+b2=1,|1-2a+b|+2a+1=b2-a2,则a+b=______.
答案
∵a2+b2=1,|1-2a+b|+2a+1=b2-a2,设a=sinx,b=cosx,
∴得|1-2sinx+cosx|+2sinx+1=(cosx)2-(sinx)2,即|1-2sinx+cosx|=-2sinx-2(sinx)2,可知sinx≤0,
∵-1≤cosx≤1,
∴1-2sinx+cosx≥0,故得1-2sinx+cosx+2sinx+1=(cosx)2-(sinx)2,即 2(cosx)2-cosx-3=0,
即(2cosx-3)(cosx+1)=0
又∵-1≤cosx≤1,
∴cosx=-1,所以sinx=0,故a+b=cosx+sinx=-1,
故答案为-1.
可先令a=sinx,b=cosx,并代入已知代数式|1-2a+b|+2a+1=b2-a2,进行化简可得(2cosx-3)(cosx+1)=0,知cosx=-1,所以sinx=0,故a+b=cosx+sinx=-1.
完全平方公式.
本题难度较大,主要考查完全平方公式,本题可利用换元法进行解答.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点