证明(2^48) -1能被63和65整除
题目
证明(2^48) -1能被63和65整除
RT..
答案
展开:2^48-1=(2^24+1)(2^24-1)=(2^24+1)(2^12+1)(2^12-1)=(2^24+1)(2^12+1)(2^6+1)(2^6-1)
其中2^6-1=63 2^6+1=65
所以(2^48) -1能被63和65整除
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点