过椭圆x29+y24=1上一点H作圆x2+y2=2的两条切线,点A,B为切点,过A,B的直线l与x轴,y轴分布交于点P,Q两点,则△POQ面积的最小值为( ) A.12 B.43 C.1 D.23
题目
过椭圆
+=1上一点H作圆x
2+y
2=2的两条切线,点A,B为切点,过A,B的直线l与x轴,y轴分布交于点P,Q两点,则△POQ面积的最小值为( )
A.
答案
∵点H在椭圆x29+y24=1上,∴H(3cosθ,2sinθ),∵过椭圆x29+y24=1上一点H(3cosθ,2sinθ)作圆x2+y2=2的两条切线,点A,B为切点,∴直线AB的方程为:(3cosθ)x+(2sinθ)y=2,∵过A,B的直线l与x轴,y轴分...
由点H在椭圆
+=1上,知H(3cosθ,2sinθ),由过椭圆
+=1上一点H(3cosθ,2sinθ)作圆x
2+y
2=2的两条切线,点A,B为切点,知直线AB的方程为:(3cosθ)x+(2sinθ)y=2,由此能求出△POQ面积最小值.
圆与圆锥曲线的综合;椭圆的简单性质.
本题考查三角形面积的最小值的求法,具体涉及到椭圆、圆、直线方程、三角函数、参数方程等基本知识点,解题时要认真审题,注意等价转化思想的合理运用.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点