数学分析(1)有限覆盖定理证明题

数学分析(1)有限覆盖定理证明题

题目
数学分析(1)有限覆盖定理证明题
设f(x)是区间I(不一定是有限闭区间)上的连续函数,用有限覆盖定理证明f(I)也是一个区间
答案
关键是说明f(I)具有介值性,实际上本题也就是要证明连续函数的介值性定理.
如果是开区间,可以讲函数延拓到闭区间上,端点函数值取相应的单侧极限即可.
另外如果是无界的区间,不妨设是[a,+∞),只需证明对任意的M>a,都有f([a,M])是区间即可.
这样实际上问题归结于用有限覆盖定理来证明闭区间上的连续函数的介值性定理,而这又只需证明零点定理即可.即:若f∈C[a,b],且f(a)f(b)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.