设函数f(x)=1/x,g(x)=ax^2+bx,若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点,则当b属于(0,1)时,求实数a的取值范围?
题目
设函数f(x)=1/x,g(x)=ax^2+bx,若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点,则当b属于(0,1)时,求实数a的取值范围?
(负9分之2倍根号3,正9分之2倍根号3),
答案
这个题目其实就是考我们对于一元多次函数的理解,由于高中还不具备解一元多次方程的能力,所以这类问题都是转换成极值的问题来处理:由于两条曲线有且只有两个交点,所以令1/x=ax^2+bx有且只有两个解,这样将方程变形,并...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点