如图①,以四边形AOCD的顶点O为原点建立直角坐标系,点A、C、D的坐标分别为(0,2)、(2,0)、(2,2),点P(m,0)是x轴上一动点,m是大于0的常数,以AP为一边作正方形APQR(QR落在

如图①,以四边形AOCD的顶点O为原点建立直角坐标系,点A、C、D的坐标分别为(0,2)、(2,0)、(2,2),点P(m,0)是x轴上一动点,m是大于0的常数,以AP为一边作正方形APQR(QR落在

题目
如图①,以四边形AOCD的顶点O为原点建立直角坐标系,点A、C、D的坐标分别为(0,2)、(2,0)、(2,2),点P(m,0)是x轴上一动点,m是大于0的常数,以AP为一边作正方形APQR(QR落在第一象限),连接CQ.
作业帮
(1)请判断四边形AOCD的形状,并说明理由:
(2)连接RD,请判断△ARD的形状,并说明理由:
(3)如图②,随着点P(m,0)的运动,正方形APQR的大小会发生改变,若设CQ所在直线的表达式为y=kx+b(k≠0),求k的值.
答案
(1)如图①,由题意知:OA=OC=CD=AD=2
∴四边形OADC为菱形.
又∵∠AOC=90°
∴四边形OADC为正方形;
(2)如图①,∵四边形APQR是正方形,
∴AP=AR,∠PAR=90°,
∵四边形OADC是正方形,
∴∠OAD=90°,
∴∠OAP=∠DAR,
又∵OA=DA
∴在△OAP与△DAR中,
AO=AD
∠OAP=∠DAR
AP=AR

∴△OAP≌△DAR(SAS),
∴∠ADR=∠AOP=90°,即△ARD为直角三角形;
作业帮
(3)如图②,过点Q作QE⊥x轴于E点.则∠QEC=∠AOP=90°
∵四边形APQR是正方形
∴AP=PQ,∠APQ=90°,
∴∠APO+∠EPQ=90°.
∵∠OAP+∠APO=90°,
∴∠OAP=∠EPQ,
∴在△AOP与△PEQ中,
∠AOP=∠PEQ
∠OAP=∠EPQ
AP=PQ

∴△AOP≌△PEQ(AAS),
∴AO=PE=2,PO=QE=m(m是大于0的常数),
∴Q(2+m,m)、C(2,0)
m=(2+m)k+b
0=2k+b

解得:
k=1
b=-2

∴k的值为1.
(1)首先由“四条边相等的四边形”可以判定四边形AOCD是菱形,然后由“有一内角为直角的菱形是正方形”推知菱形AOCD是正方形;
(2)利用△OAP≌△DAR(SAS),求出∠ADR=∠AOP=90°,即得△ARD是直角三角形;
(3)通过证△AOP≌△PEQ(AAS),得到AO=PE=2,PO=QE=m(m是大于0的常数),即Q(2+m,m)、C(2,0).所以把Q、C的坐标代入函数解析式,列出方程组,通过解方程组来求k的值.

一次函数综合题.

本题考查了一次函数综合题,其中涉及到的知识点有:正方形的性质,全等三角形的判定与性质、以及用待定系数法求一次函数的解析式.解答(3)中的方程组时,要注意m的取值范围.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.