如图,在正方形ABCD中,点E、F分别是边AB、AD的中点,DE与CF相交于G,DE、CB的延长线相交于点H,点M是CG的中点.求证: (1)BM∥GH; (2)BM⊥CF.
题目
如图,在正方形ABCD中,点E、F分别是边AB、AD的中点,DE与CF相交于G,DE、CB的延长线相交于点H,点M是CG的中点.求证:
(1)BM∥GH;
(2)BM⊥CF.
答案
证明:(1)∵正方形ABCD,∴∠A=∠EBH=90°,AD=BC,∵E是AB的中点,∴AE=BE,∵∠AED=∠BEH,∴△AED≌△BEH,∴AD=BH,∴BC=BH,即点B为CH的中点,又点M为CG的中点,∴BM为△CGH的中位线,∴BM∥GH.(2)∵四边...
(1)根据正方形的性质得到∠A与∠EBH都为直角,边AD与BC的相等,再根据已知的点E为AB的中点得到AE=BE,另加一对对顶角的相等,根据“ASA”证得三角形ADE与三角形BHE全等,根据全等三角形的对应边相等可得BH=AD,等量代换可得BH=BC,从而得到点B为CH的中点,再由已知的点M为CG的中点,可得BM为三角形CGH的中位线,根据中位线定理即可得到BM与GH的平行;
(2)根据正方形的性质得到正方形的四条边相等,∠A与∠DAC都为直角,又点E、F分别是边AB、AD的中点,可得AE=DF,根据“SAS”证得三角形AED与三角形DFC全等,根据全等三角形的对应角相等可得∠ADE与∠DCF的相等,又∠ADE+∠CDE=90°,根据等量代换可得∠DCF+∠CDE=90°,从而得到∠CGH为90°,最后由第一问得到的平行,根据两直线平行,同位角相等即可得到∠CMB为90°,即BM⊥CF.
正方形的性质;全等三角形的判定与性质.
此题考查了正方形的性质,全等三角形的判定与性质以及平行线的判定与性质.是一道把三角形的知识与四边形知识综合在一起的一道证明题,是历年中考必考的题型,要求学生熟练掌握有关知识,结合图形,勇于探索,锻炼了学生发散思维能力.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点