离散数学算法

离散数学算法

题目
离散数学算法
建立一个算法来生成n元素集合的r排列 这个算法应该怎么写?
答案
设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序.值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动. 一趟快速排序的算法是: 1)设置两个变量I、J,排序开始的时候:I=0,J=N-1; 2)以第一个数组元素作为关键数据,赋值给key,即 key=A[0]; 3)从J开始向前搜索,即由后开始向前搜索(J=J-1),找到第一个小于key的值A[J],并与A[I]交换; 4)从I开始向后搜索,即由前开始向后搜索(I=I+1),找到第一个大于key的A[I],与A[J]交换; 5)重复第3、4、5步,直到 I=J; (3,4步是在程序中没找到时候j=j-1,i=i+1,直至找到为止.找到并交换的时候i, j指针位置不变.另外当i=j这过程一定正好是i+或j-完成的最后另循环结束) 例如:待排序的数组A的值分别是:(初始关键数据:X=49) 注意关键X永远不变,永远是和X进行比较,无论在什么位子,最后的目的就是把X放在中间,小的放前面大的放后面. A[0] 、 A[1]、 A[2]、 A[3]、 A[4]、 A[5]、 A[6]: 49 38 65 97 76 13 27 进行第一次交换后: 27 38 65 97 76 13 49 ( 按照算法的第三步从后面开始找) 进行第二次交换后: 27 38 49 97 76 13 65 ( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时:I=3 ) 进行第三次交换后: 27 38 13 97 76 49 65 ( 按照算法的第五步将又一次执行算法的第三步从后开始找 进行第四次交换后: 27 38 13 49 76 97 65 ( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时:I=4,J=6 ) 此时再执行第三步的时候就发现I=J,从而结束一趟快速排序,那么经过一趟快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面. 快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最后把此数据序列变成一个有序的序列,根据这种思想对于上述数组A的快速排序的全过程如图6所示: 初始状态 {49 38 65 97 76 13 27} 进行一次快速排序之后划分为 {27 38 13} 49 {76 97 65} 分别对前后两部分进行快速排序 {27 38 13} 经第三步和第四步交换后变成 {13 27 38} 完成排序. {76 97 65} 经第三步和第四步交换后变成 {65 76 97} 完成排序. 图示
记得采纳啊
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.