平面内有n(n≥2)条直线,每两条直线都相交,最多有多少交点?

平面内有n(n≥2)条直线,每两条直线都相交,最多有多少交点?

题目
平面内有n(n≥2)条直线,每两条直线都相交,最多有多少交点?
分析:两条直线相交只有一个交点,
第3条直线和前两条直线都相交,增加了2个交点,得1+2,
第4条直线和前3条直线都相交,增加了3个交点,得1+2+3,
第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4,
……
第n条直线和前(n-1)条直线都相交,增加了______个交点,
由此断定n条直线两两相交,最多有交点[1+2+3+…+(n-1)]个,
这里,求出其合,即_______个交点.
填空!空一定要填吖!
答案
第n条直线和前(n-1)条直线都相交,增加了(n-1)个交点;由此断定n条直线两两相交,最多有交点[1+2+3+…+(n-1)]个,这里,求出其和,即[n(n-1)/2]个交点.注:等差数列前n项和S‹n›=(a₁+a‹n̹...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.