(2012•陕西三模)已知f(x)=excosx,则此函数图象在点(1,f(1))处的切线的倾斜角为( ) A.零角 B.锐角 C.直角 D.钝角
题目
(2012•陕西三模)已知f(x)=excosx,则此函数图象在点(1,f(1))处的切线的倾斜角为( )
A. 零角
B. 锐角
C. 直角
D. 钝角
答案
∵f′(x)=excosx-exsinx,∴f′(1)=e(cos1-sin1)
∴函数图象在点(1,f(1))处的切线的斜率为e(cos1-sin1)
∵e(cos1-sin1)<0,∴函数图象在点(1,f(1))处的切线的倾斜角为钝角
故选D
先求函数f(x)=excosx的导数,因为函数图象在点(1,f(1))处的切线的斜率为函数在x=1处的导数,就可求出切线的斜率,再根据切线的斜率是倾斜角的正切值,就可根据斜率的正负判断倾斜角是锐角还是钝角.
利用导数研究曲线上某点切线方程.
本题考查了导数的运算及导数的几何意义,以及直线的倾斜角与斜率的关系,属于综合题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点