已知函数f(x)=2x+k•2-x,k∈R. (1)若函数f(x)为奇函数,求实数k的值; (2)若对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数k的取值范围.

已知函数f(x)=2x+k•2-x,k∈R. (1)若函数f(x)为奇函数,求实数k的值; (2)若对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数k的取值范围.

题目
已知函数f(x)=2x+k•2-x,k∈R.
(1)若函数f(x)为奇函数,求实数k的值;
(2)若对任意的x∈[0,+∞)都有f(x)>2-x成立,求实数k的取值范围.
答案
(1)∵函数f(x)=2x+k•2-x为奇函数,∴f(-x)=-f(x)∴2-x+k•2x=-(2x+k•2-x)∴(1+k)+(k+1)22x=0恒成立∴k=-1(2)∵对任意的x∈[0,+∞)都有f(x)>2-x成立,∴2x+k•2-x>2-x成立∴1-k<22x对任意的...
(1)利用函数f(x)=2x+k•2-x为奇函数,建立等式,即可求实数k的值;
(2)对任意的x∈[0,+∞)都有f(x)>2-x成立,即2x+k•2-x>2-x成立,即1-k<22x对任意的x∈[0,+∞)成立,从而可求实数k的取值范围.

函数恒成立问题;函数奇偶性的性质.

本题考查函数的奇偶性,考查恒成立问题,解题的关键是利用奇偶性的定义,利用分离参数法求解恒成立问题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.