3 2 2
题目
3 2 2
设函数f(x)=ax +bx -3ax+1(a.b属于R)在X=X1,X=X2处取的极值,且|X1+X2|=2
(1)若A=1,求b的值,并求f(x)的单调区间
(2)若a大于0,求b的取值范围
希望回答的越详细越好,
题目开头的3 2 是在函数X上的平方项2是A上的平方项是 f(x)=ax^3 +bx^2 -3a^2x+1
答案
因为f(x)=ax^3 +bx^2 -3a^2x+1,A=1
求导:(x)=3x^2+2bx-3
因为在X=X1,X=X2处取的极值,且|X1+X2|=2
所以令:(x)=0
由伟达得:|X1+X2|=|-(2b/3)|=2
解得b=3或b=-3
所以f~(x)=x^2+2x-1或f~(x)=x^2-2x-1
当b=3,(x)=0,x=-1+/2,x=-1-/2 ,
(x)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- I want to ask the sentense :This music is very popular,so many people like it.how to change this
- What is full of holes but still holds water
- 中国志愿者加入火星-500试验计划:the volunteers will have eight hours of ____,eight hours of work
- 1、一定质量的气体,从外界吸收了2.6*10^5J的热量,内能增加了4.2*10^5J.是气体对外界做了功,还是外界...
- 已知指令mov ax,[bp+di+100h],其中ds=2000h,bp=0300h,di=0010h.指令源操作的寻址方式,源操作数的物理地址
- (2的平方+1)(2的四次方+1)(2的八次方+1)(2的十六次方+1)(2的三十二次方+1 )(用幂的形式表示)
- 我国对外开放始终坚持什么原则
- 如果一元一次方程ax+b=0(a≠0)的解是正数,则( ) A.a、b异号 B.b大于0 C.a、b同号 D.a小于0
- 对一切大于2的正整数n,数n5-5n3+4n的最大公约数是_.
- 一列客车和一列货车同时从A、B两地相向而行,6小时相遇.相遇后客车又行了4小时到达B地.这时货车还要行驶多少小时才能到达A地?
热门考点