3用部分积分法求下列不定积分

3用部分积分法求下列不定积分

题目
3用部分积分法求下列不定积分
∫(lnx)/(x^2) dx -((lnx)+1)/ x+c
∫(ln(1+e^x))/(e^x) dx答案为x-(1+e^x)*ln(1+e^x)/ (e^x)+c
∫cos(lnx) dx x(cos lnx + sin lnx)/2+c
答案
1、设u=lnx,v’=1/x^2,
u’=1/x,v=-1/x,
原式=-(lnx)/x+∫dx/x^2
=-(lnx)/x-1/x+C.
2、设t=e^x,x=lnt,dx=(1/t)dt,
原式=∫ln(1+t)dt/t^2,
设u=ln(1+t),v’=1/t^2,
u’=1/(1+t),v=-1/t,
原式=-[ln(1+t)]/t+∫dt/[t(t+1)]= -[ln(1+t)]/t+∫dt/(t+1)- ∫dt/t
=-[ln(1+t)]/t+lnt-ln(t+1)+C
=-[ln(1+e^x)]/e^x-ln(1+e^x)+x+C
=x-ln(1+e^x)(1+e^x)/(e^x)+C.
3、∫cos(lnx) dx,
设t=lnx,x=e^t,dx=e^tdt,
原式=∫(cost)*e^tdt,
设u=e^t,v’=cost,
u’=e^t,v=sint,
原式=e^tsint-∫e^tsintdt,
对∫e^tsintdt再分部积分,
u=e^t,v’=sint,
u’=e^t,v=-cost,
∫e^tsintdt=-e^tcost+∫e^tcostdt,
∫(cost)*e^tdt =e^tsint-(-e^tcost+∫e^tcostdt]
=e^tsint+e^tcost-∫e^tcostdt,
2∫(cost)*e^tdt= e^tsint+e^tcost,
∴∫(cost)*e^tdt=( e^tsint+e^tcost)/2+C
∴∫cos(lnx) dx=x[sin(lnx)+cos(lnx)]/2+C.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.