如果x2+2x=3,那么x4+7x3+8x2-13x+15=______.
题型:填空题难度:一般来源:不详
如果x2+2x=3,那么x4+7x3+8x2-13x+15=______. |
答案
x2+2x=3 (x-1)(x+3)=0 则x=1或-3 所以x4+7x3+8x2-13x+15=x2(x2+2x)+5x3+8x2-13x+15 =x2×3+5x3+8x2-13x+15 =5x3+11x2-13x+15 =5x(x2+2x)+x2-13x+15 =15x+x2-13x+15 =x2+2x+15 =3+15 =18 故答案为18 |
举一反三
若(3x+1)5=ax5+bx4+cx3+dx2+ex+f,则a+c+e=______. |
若a-2=-3,2x+y=2,则代数式2x(a-2)-y(2-a)的值是______. |
当x分别等于,,,,,,2000,2001,2002,2003,2004,2005时,计算代数式的值,将所得的结果相加,其和等于______. |
已知x-=3,那么多项式x3-x2-7x+5的值是( ) |
最新试题
热门考点