在3×3的方格图内,填上适当的整数,就能使每一行、每一列和每条对角线上三个数之和都相等,此和记作s.如果下列两个方格图中都要填上-2,0,1和3四个数,另外至多

在3×3的方格图内,填上适当的整数,就能使每一行、每一列和每条对角线上三个数之和都相等,此和记作s.如果下列两个方格图中都要填上-2,0,1和3四个数,另外至多

题型:填空题难度:一般来源:不详
在3×3的方格图内,填上适当的整数,就能使每一行、每一列和每条对角线上三个数之和都相等,此和记作s.如果下列两个方格图中都要填上-2,0,1和3四个数,另外至多再加______个不同的整数,方能使得两个方格图的s不同.
答案
绝对值小于5的整数为-4、-3、-2、-1、0、1、2、3、4,相加等于0,把0放在中心.
如图
故答案为:5.
举一反三
先化简,再求值:(x+y)(y-x)[2x2-(y+x)(-y+x)],其中x=-1,y=
1
2
题型:解答题难度:一般| 查看答案
计算下列各小题:
(1)|-5|-


16
+
327

-(2012-
π
3
0
(2)(4ab3+6a3b-8a3b2)÷2ab-(a+b)(3a+2b)
题型:解答题难度:一般| 查看答案
如图,有A、B、C三种不同型号的卡片,每种卡片各有k张.其中A型卡片是边长为a的正方形,B型卡片是长为b、宽为a的长方形,C型卡片是边长为b的正方形.从其中取若干张卡片,每种卡片至少取一张,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分).
尝试操作:若k=10,请选取适当的卡片拼成一个边长为(2a+b)的正方形,画出示意图.
思考解释:若k=20,
①共取出50张卡片,取出的这些卡片能否拼成一个正方形?请简要说明理由;
②可以拼成______种不同的正方形.
拓展应用:上述A、B、C型的卡片各若干张(足够多),已知:a=2b,现共取出2500张卡片,拼成一个正方形,求可以拼成的正方形中面积最大值.(用含a的代数式表示).
题型:解答题难度:一般| 查看答案
如图,已知等腰直角△ACB的边AC=BC=a,等腰直角△BED的边BE=DE=b,且a<b,点C、B、E在一条直线上,连接AD.
(1)求△ABD的面积;
(2)如果点P是线段CE的中点,连接AP、DP得到△APD,求△APD的面积.
(以上结果先用含a、b代数式表示,后化简)
题型:解答题难度:一般| 查看答案
设x1,x2,…,x9是正整数,且x1<x2<…<x9,x1+x2+…+x8+x9=230,求x9的最小值,并写出x9取得最小值且x1取得最大值时一组x1,x2,…,x9的值.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.