已知p、q满足等式|p+2|+(q-4)2=0,分解因式:(x2+y2)-(pxy+q)=______.
题型:填空题难度:一般来源:不详
已知p、q满足等式|p+2|+(q-4)2=0,分解因式:(x2+y2)-(pxy+q)=______. |
答案
∵|p+2|+(q-4)2=0, ∴p=-2,q=4, ∴(x2+y2)-(pxy+q) =(x2+y2)-(-2xy+4) =x2+y2+2xy-4, =(x+y)2-4, =(x+y+2)(x+y-2). 故答案为:(x+y+2)(x+y-2). |
举一反三
因式分解: (1)2x2-4x=______; (2)3ab2-a2b=______. |
若(x2+y2)4-8(x2+y2)2+16=0,则x2+y2=______. |
因式分解: (1)8x2+12x; (2)x2-12x+36. |
下列分解因式正确的是( )A.x3-x=x(x-1)2 | B.x2+y2=(x+y)(x-y) | C.-x2-y2=-(x-y)(x+y) | D.4x2-4x+1=(2x-1)2 |
|
最新试题
热门考点