把下列各式因式分(1)2xy2+4x2;(2)x2+6xy+9y2;(3)x2-y2+2y-1(分组分解法); (4)a2+4a+3(“十”字相乘法)
题型:解答题难度:一般来源:不详
把下列各式因式分 (1)2xy2+4x2; (2)x2+6xy+9y2; (3)x2-y2+2y-1(分组分解法); (4)a2+4a+3(“十”字相乘法). |
答案
(1)2xy2+4x2=2x(y+2x);
(2)x2+6xy+9y2=(x+3y)2;
(3)x2-y2+2y-1 =x2-(y2-2y+1) =x2-(y-1)2 =(y-1+x)(x-y+1);
(4)a2+4a+3=(a+1)(a+3). |
举一反三
已知xy=3,x2+xy-2y2=2(x+2y),且x≠-2y,则x+y=______. |
因式分am-an+ap=______,2x2-8=______. |
把下列多项式分解因式 (1)12x3y-3xy2; (2)x-9x3; (3)3a2-12b(a-b). |
将下列各式直接因式分①2x2+6x=______②1-9y2=______. ③a2-2a+1=______④a2+a+=______. |
因式分 (1)x2-4; (2)x3-9x; (3)x3+4x2+4x. |
最新试题
热门考点