如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照

如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照

题型:解答题难度:一般来源:不详
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.

小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;
(2)设AD=x,建立关于x的方程模型,求出x的值.
答案
(1)证明见解析;(2)6.
解析

试题分析:(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;
(2)利用勾股定理,建立关于x的方程模型(x-2)2+(x-3)2=52,求出AD=x=6.
试题解析:(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF.
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,
∴∠EAF=90°.
又∵AD⊥BC
∴∠E=∠ADB=90°,∠F=∠ADC=90°.
∴四边形AEGF是矩形,
又∵AE=AD,AF=AD
∴AE=AF.
∴矩形AEGF是正方形.
(2)解:设AD=x,则AE=EG=GF=x.
∵BD=2,DC=3
∴BE=2,CF=3
∴BG=x-2,CG=x-3
在Rt△BGC中,BG2+CG2=BC2
∴(x-2)2+(x-3)2=52
化简得,x2-5x-6=0
解得x1=6,x2=-1(舍去)
所以AD=x=6.
考点:1. 翻折变换(折叠问题);2.勾股定理;3.正方形的判定.
举一反三
如果三角形的两边长分别是方程x2-8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是(  )
A.5.5B.5C.4.5D.4

题型:单选题难度:简单| 查看答案
当x满足不等式时,求方程的解。
题型:不详难度:| 查看答案
若一个三角形的边长均满足方程,则此三角形的周长为       
题型:填空题难度:简单| 查看答案
满足条件时,求出方程的根
题型:不详难度:| 查看答案
某药品原价每盒25元,.经过两次连续降价后,售价每盒16元.则该药品平均每次降价的百分数是            
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.