已知x1、x2是方程x2-2kx+k2-k=0的两个实数根.是否存在常数k,使x1x2+x2x1=32成立?若存在,求出k的值;若不存在,请说明理由.

已知x1、x2是方程x2-2kx+k2-k=0的两个实数根.是否存在常数k,使x1x2+x2x1=32成立?若存在,求出k的值;若不存在,请说明理由.

题型:不详难度:来源:
已知x1、x2是方程x2-2kx+k2-k=0的两个实数根.是否存在常数k,使
x1
x2
+
x2
x1
=
3
2
成立?若存在,求出k的值;若不存在,请说明理由.
答案
∵a=1,b=-2k,c=k2-k
而△=b2-4ac=(-2k)2-4(k2-k)=4k
∴当k≥0时,方程有实数根;
∵x1+x2=2k,x1x2=k2-k,
x1
x2
+
x2
x1
=
(x1+x2)2-2x1x2
x1x2

=
4k2-2(k2-k)
k2-k

=
3
2

整理,解得:k1=0,k2=-7(舍去),
当k=0时,x1=x2=0,
x1
x2
x2
x1
无意义;
故不存在常数k,使
x1
x2
+
x2
x1
=
3
2
成立.
举一反三
如果一元二次方程x2-2x-3=0的两根为x1、x2,则x12x2+x1x22的值等于(  )
A.-6B.6C.-5D.5
题型:不详难度:| 查看答案
若x1,x2是一元二次方程x2-2x-1=0的两个根,则x1+x2的值等于______.
题型:不详难度:| 查看答案
下列关于一元二次方程的四种说法,你认为正确的是(  )
A.方程2y2-y+
1
2
=0必有实数根
B.方程x2+x+1=0的两个实数根之积为-1
C.以-1、2两数为根的一元二次方程可记为:x2+x-2=0
D.一元二次方程2x2+4x+3m=0的两实数根的平方和为7,则m=-1
题型:不详难度:| 查看答案
如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,x1=
-b+


b2-4ac
2a
x2=
-b-


b2-4ac
2a

于是有x1+x2=
-2b
2a
=-
b
a
x1-x2=
b2-(b2-4ac)
4a2
=
c
a

综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

这是一元二次方程根与系数的关系,我们可以利用它来解题,例x1,x2是方程x2+6x-3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=-6,x1x2=-3,则
x21
+
x22
=(x1+x^)2-2x1x2
=(-6)2-2×(-3)=42.
请你根据以上材料解答下列题:
(1)若x2+bx+c=0的两根为1和3,求b和c的值.
(2)已知x1,x2是方程x2-4x+2=0的两根,求(x1-x22的值.
题型:解答题难度:一般| 查看答案
先阅读下面材料,然后解答问题:
王老师在黑板上出了这样一道习题:设方程2x2-5x+k=0的两个实数根是x1,x2,请你选取一个适当的k值,求
x2
x1
+
x1
x2
的值.
小明同学取k=4,则方程是2x2-5x+4=0.
由根与系数的关系,得x1+x2=
5
2
,x1x2=2.
x2
x1
+
x1
x2
=
x22+x12
x1x2
=
(x1+x2)2-2x1x2
x1x2
=
25
4
-2×2
2
=
9
8

x2
x1
+
x1
x2
=
9
8

问题(1):请你对小明解答的正误作出判断,并说明理由.
问题(2):请你另取一个适当的正整数k,其它条件不变,不解方程,改求|x1-x2|的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.