如图,一个长与宽分别为2你cm,你cm的矩形铁皮,从矩形铁皮的了个角处各剪去一个边长为1右cm的正方形,沿虚线弯折做成无盖的长方体水槽,若水槽的容积为g右右右c
题型:不详难度:来源:
如图,一个长与宽分别为2你cm,你cm的矩形铁皮,从矩形铁皮的了个角处各剪去一个边长为1右cm的正方形,沿虚线弯折做成无盖的长方体水槽,若水槽的容积为g右右右cm3,则矩形铁皮的宽你=______cm.
|
答案
设原矩形铁皮的边长为wxcm,宽为xcm, 则由题意可得10(wx-w0)(x-w0)=4000, 解得x1=e0,xw=0(不合题意,舍去). 答:原矩形铁皮的边长为e0cm. 故答案为:e0. |
举一反三
某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米.设这个苗圃园垂直于墙的一边的长为x米 (1)用含x的代数式表示平行于墙的一边的长为______米,x的取值范围为______; (2)这个苗圃园的面积为88平方米时,求x的值.
|
在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式. 这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.
【研究速算】 提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法? 几何建模: 用矩形的面积表示两个正数的乘积,以47×43为例: (1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面. (2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021. 用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果. 归纳提炼: 两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述)______. 【研究方程】 提出问题:怎样图解一元二次方程x2+2x-35=0(x>0)? 几何建模: (1)变形:x(x+2)=35. (2)画四个长为x+2,宽为x的矩形,构造图4 (3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x的矩形面积之和,加上中间边长为2的小正方形面积. 即(x+x+2)2=4x(x+2)+22 ∵x(x+2)=35 ∴(x+x+2)2=4×35+22 ∴(2x+2)2=144 ∵x>0 ∴x=5 归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解. 要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长) 【研究不等关系】 提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)? 几何建模: (1)画长y+3,宽y+2的矩形,按图5方式分割 (2)变形:2y+5=(y+3)+(y+2) (3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5 归纳提炼: 当a>2,b>2时,表示ab与a+b的大小关系. 根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)
|
如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=12cm.点P从点C处出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,若一个点到达目的停止运动时,另一点也随之停止运动.运动时间为t秒; (1)用含有t的代数式表示BQ、CP的长; (2)写出t的取值范围; (3)用含有t的代数式表示Rt△PCQ和四边形APQB的面积; (4)当P、Q处在什么位置时,四边形PQBA的面积最小,并求这个最小值. |
小芳家今年添置了新电器.已知今年5月份的用电量是120千瓦时,根据2009年5月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时.假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电量是多少千瓦时? |
如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为______.
|
最新试题
热门考点